
Vulnerability Scanning for Buffer Overflow

Aishwarya Iyer Lorie M. Liebrock

Graduate student Assistant Professor

aish112@cs.nmt.edu liebrock@cs.nmt.edu

Computer Science Department

New Mexico Tech, New Mexico

Abstract

With new applications being launched each day, the

number vulnerabilities to attack increases. Attackers find
new ways to attack any application they come across.

Some attacks are successful because the application is

vulnerable due to the vulnerabilities in files assisting in
the proper functioning of the application. Although the

area of attacks is vast, buffer overflow attacks form the

basis for most attacks. Hence it would be a great boon to
the Software Industry if their products were made secure

from buffer overflow attacks. This paper introduces a tool,

which is used to locate vulnerable files, which in turn have
been the root cause for buffer overflow.

1. Introduction

Buffer overflow attacks comprise of over 50% of the

attacks. If buffer overflow could be avoided, then most of

the attacks based on buffer overflow become ineffective.

The focus of this paper is how to detect and avoid buffer

overflow attacks, while finding out which file and function

allowed the attack.

A few tools, which have been previously implemented,

namely, StackGuard, Libsafe, and Janus have been used as

references for the tool implemented in this paper.

2. S-tool

2.1: First Stage of the S-tool – Running the

application: The application under test is run under

normal circumstances. At the same time, a record is made

of the stack trace through the entire execution of the

application. There are many different ways in which a

stack trace could be made for an application, for example:

a. When the position of the return address of a function
is required: When a module/ function is started, its

return address and its local variables are stored in the

stack. In .Net[1], the VarPtr of a local variable returns

the address of the location of the variable on the stack.

Once the address of a local variable is obtained, it is

possible to obtain the return address of that function.

This can be done by trial and error. The distance of

the return address from the local variable can be

tracked.

b. When all the contents of the stack are required:

Using the StackTrace function in .Net, the entire

contents of the stack can be obtained. The entire

image of a stack can be obtained by collecting

StackFrame objects in each subroutine and function.

c. When only the control flow through the application is

required: Using the StackFrame objects, the module

name and line number from where the module is

called can be obtained.

Since it is sufficient that the control flow through the

application is known (to see if it is vulnerable to an

attack), the method in c is followed in S-tool.

2.2: Second Stage - Run the application again and

apply an attack: The application is executed again, but

with the injection of a buffer overflow attack.

2.3: Compare the two stack traces: When comparing the

two stack traces, several cases must be considered:

Case 1: When the stack traces are similar
The stack traces are said to be similar when both traces

follow the same execution path. If this happens, the attack

was not successful.

Case 2: When the stack traces are different

Stack traces are different if the execution paths are

different or if the return from any function does not

happen at the same time in both traces. From this, there are

more sub-cases to consider:

1. When the execution paths are different in the two

cases, it could be concluded that the attack was a

success and that the return address on the stack has

been modified. In other words, when the return

from a function does not happen, then it means that

the attack was successful.

2. When the return from a function is delayed, two

more cases result.

a. The delay in the return of the function was likely

due to an exception/error handler being executed.

For example, consider a situation where the attack

code inputs a long string so that the stack would

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

overflow. If the application reads and possibly

stores elsewhere the extra characters, but does not

overflow the declared storage, the application

avoids the attack. Therefore, the application is

secure against this particular attack.

b. The delay could also have been caused by an

exceptionally advanced attack which will record the

return address, overwrite it and insert the return

address elsewhere and hence allowing execution of

the function to continue. This sort of attack has not

yet been witnessed.

The difference between whether the change in execution

path is due to an attack or an exception handler can be

seen on the stack traces where the method names and line

numbers would be displayed.

Now that it is known whether an attack has occurred or

not, the next step is to trace the vulnerable area, in case of

an attack.

2.4: Locate the vulnerable area in the Application: As

its name implies, the StackTrace object keeps track of all

the procedures that are waiting for the current one to

complete. The StackTrace object can also get information

such as the caller of the routine, File name, Line number,

etc., which would be useful in locating the vulnerable area

in the program. Using the location where the two stack

traces differ and the method name and line number at that

particular point, the vulnerable area can be located.

Once the vulnerable area has been identified, the

programmer(s) can repair that portion of code and the

tester(s) can repeat the above process again with different

kinds of Stack Overflow attacks. This process goes on

until the application is considered to be secure enough.

3. Implementation

The .Net environment was chosen to implement the S-

tool. It is a menu-based tool and has the following menu

items

File

Attacks

Demonstration

Compare

Documentation

Some of the menu items are briefed below.

3.1: Attacks

This menu consists of the different types of attacks that

could be made on an application in a particular language.

As an example, one of the attacks discussed is as follows:

String Copy - strcpy attack

The vulnerability in strcpy function is the most common

form of buffer overflow attack. Defining strings of

different lengths and copying the longer string into the

shorter one will result in an overflow.

The stack trace is invoked at the beginning and at the

end of every module to keep track of what stage the

execution is at. The stack trace code is actually written in a

separate header file and is invoked when necessary.

3.2: Compare

The user must click on the compare menu. The user is

then asked which two files (containing the stack traces) are

to be compared. When given the file names along with the

parent folder, the Compare executable compares the file

contents and displays the result. The result will contain the

module name and the line number where the vulnerability

lies in the application.

4. Results

Three simple programs were written to test the concept

of the S-tool and again the string copy function result is

discussed.

The string copy application is run from the tool and

execution is as follows:

1. The user is prompted for the text file name where the

stack trace is to be stored.

2. The stack trace through the program is displayed.

3. The user is asked for the string input.

4. When a short string is entered, the rest of the

execution takes place as planned and the stack trace is

stored in a file.

The next step is to run the application again but an attack

should now be made. The application execution is the

same as described previously, but a string of length greater

than the declared buffer is given as input. The resultant

stack trace is stored in another text file. The comparison is

then done to show where the vulnerability lies.

In general, the vulnerability lies between the location

indicated by the tool and the previous stack trace call

location. If this is a large section of code, the user may

want to insert more stack trace calls and rerun the tool.

5. Conclusions and Future Work

The vulnerable area of an application code can be

detected by S-tool and hence the applications can be made

more secure. S-tool is most useful to application

developers for testing the software security.

An extension to this work could be to do the scanning of

vulnerabilities for other kinds of known attacks like input

validation, SQL injection, et cetera.

5. References

1. Darin Haggins Emulate VB.NET Error Handling

http://www.fawcette.com/archives/premier/mgznarch/

vbpj/2001/09sep01/bb0109/bb0109.asp

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

